
International Journal of Refrigeration 131 (2021) 775–785

Available online 27 July 2021
0140-7007/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Refrigeration machine modeling for exergy-based performance and 
optimization potential evaluation of chillers in real field plants 

Lorenz Brenner a,b, Frank Tillenkamp *,a, Christian Ghiaus b 

a Zurich University of Applied Sciences (ZHAW), Institute of Energy Systems and Fluid-Engineering (IEFE), Technikumstrasse 9, Winterthur CH-8401, Switzerland 
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A B S T R A C T   

To investigate and optimize a refrigeration system, the behavior at various operating conditions must be known 
or determined. The performance and improvement possibilities may then be inferred from measurement data and 
compared with corresponding performance key figures. These values are typically referred to normal conditions 
and it is usually unknown which ones represent an adequate operation. However, it is relevant for refrigeration 
plant operators to have reference values for a large range of operation conditions as a baseline for determining 
the obtainable improvements. The present work proposes the application of steady-state models of refrigeration 
machines for increasing the range of applicability of the exergy-based optimization potential index method. Four 
different modeling approaches are evaluated and discussed: equation-fit, physical lumped parameter, refriger
ation cycle and artificial neural network based models. The practical usage of the improved evaluation method is 
shown for the subsystem refrigeration machine on a real field installation as a case study. With the introduced 
additional limits for the optimization potential index, the interpretability of the results is increased. The 
distinction between adequate (technical requirements exceeded), acceptable (technical requirements fulfilled) 
and inadequate (potential for improvement) operation according to the state of the art in technology is 
straightforward, which is important in practice.   

1. Introduction 

A significant amount of the energy consumption in buildings is due to 
the heating, ventilation and air-conditioning (HVAC) systems. Depend
ing on the climatic region, about 30 – 70% of the total energy con
sumption in air-conditioned buildings is due to systems for thermal 
comfort applications (Vakiloroaya et al., 2014). Thereby, more than 
50% of this energy is consumed by refrigeration machines and plants 
(Wang et al., 2018). Consequently, the optimization of such systems may 
significantly reduce the energy consumption in air-conditioned 
buildings. 

In order to investigate and optimize a refrigeration system, the 
behavior at various operating conditions must be known or determined. 
Exergy analysis is seen as an appropriate approach, as the electrical 
energy consumption of the refrigeration machines and auxiliary devices 
is the main expense in refrigeration plant operation. Electricity repre
sents high quality energy which is degraded along the processes in the 
whole system. In refrigeration plants, the interest extends from the 
refrigeration machine itself to the neighboring hydraulic circuits, since a 

well-suited hydraulic integration of the chiller and an adequate opera
tion of auxiliary devices is crucial in order to achieve a high efficiency of 
the plant. Furthermore, it is relevant for refrigeration plant operators to 
have reference values for determining the obtainable improvements. 
Interpretation of the results of the procedure should not require spe
cialists to evaluate if there is a need to take action or not. For this reason, 
a practice-oriented evaluation method for refrigeration plants in air- 
conditioning applications based on exergy analysis and technical stan
dards as baseline was introduced (Brenner et al., 2020a; 2020b). The 
method allows assessing the performance and the optimization potential 
with respect to the state of the art in technology and can be widely 
applicable in practice with most common measuring equipment of real 
field plants. In order to achieve this, the refrigeration plant is split into 
subsystems. This allows an individual assessment and leads to a reduc
tion of the required measurement variables while still ensuring a suffi
cient level of detail. The optimization potential index (OPI) (Brenner 
et al., 2020b) relates the actual and the reference exergy input of a 
subsystem while the same output is achieved. The reference is consid
ered according to the state of the art. Therefore, the key figure indicates 
how the real system would behave in comparison to a reference system 
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in exactly the same situation and reveals the potential for improvement 
with respect to the technological baseline at a glance, regardless of the 
complexity of the system (see section 2 for details). 

While for most subsystems enough data needed to derive the tech
nological baseline from standards is available, this is generally not the 
case for refrigeration machines in real field plants. Specific baseline 
values for the electrical power consumption of the compressor are not 
available in technical standards because it depends on a variety of 
variables. Consequently, further research is required to specify addi
tional reference values for the baseline in order to apply the OPI method 
in a wider range of operation conditions. Ideally, these values are 
determined with comprehensive and representative measurements. 
However, installing measurement equipment is always bound to in
vestment costs and, therefore, most of the refrigeration machines are 
instrumented with the minimum number of sensors necessary for the 
operation. These measurements are rarely logged for monitoring pur
poses as the secondary side temperatures and cooling load is of main 
interest to the plant operators, e.g. for cost allocation of the connected 
consumers. Therefore, much attention was paid to refrigeration machine 
models as it is a suitable method to determine missing quantities or to 
predict the system behavior with currently available data. 

Consequently, various studies handle the topic of refrigeration sys
tem analysis and optimization with the aid of numerical models of 
refrigeration machines or other field plant devices. Among others, Shan 
et al. proposed an improved chiller sequence control strategy for 
refrigeration plants with centrifugal chillers applying a multi-linear 

regression model (Shan et al., 2016). Typically, an optimal sequencing 
of the refrigeration machine operation can improve the plant efficiency 
and, therefore, reduce the electrical energy consumption. The authors 
showed an energy saving potential of 3% in comparison to the original 
control strategy. Wei et al. investigated a chiller plant with four refrig
eration machines, four cooling towers and two cold water storage tanks 
(Wei et al., 2014). A data-driven approach was chosen to model the 
plant and, subsequently, to ameliorate the operating conditions. The 
model was applied with measurement data of two days and the authors 
demonstrated an energy consumption reduction of approximately 14%. 
Wang et al. handled the topic of chiller plant optimization to reduce the 
power consumption of the plant, by applying artificial neural network 
models to simulate the refrigeration machines and the cooling towers 
(Wang et al., 2018). Another study focused on the energy optimization 
of a multi-chiller plant with cooling towers in a multistory office 
building (Thangavelu et al., 2017). Energy models for the chillers, 
cooling towers and auxiliary devices were developed, in order to 
improve the energy utilization. For the optimization routine, the 
building load and ambient air conditions were used as inputs. The 
optimization delivered ideal on / off strategies of the equipment as well 
as chilled and cooling water conditions. By analysing three case studies, 
the authors identified an average energy saving of 20% for small chiller 
plants and up to 40% for moderate sized refrigeration systems. 

The present work proposes the application of refrigeration machine 
models to introduce additional technical baseline values for the opti
mization potential index in the subsystem refrigeration machine. Four 

Nomenclature 

Abbreviations 
AHU air handling unit 
ANN artificial neural network 
CL subsystem cooling location 
COP coefficient of performance 
CST subsystem cold storage & transport 
CV coefficient of variation 
DC subsystem dry cooler 
EF equation fit 
FC subsystem free cooling 
MAE mean-absolute error 
MSE mean-squared error 
HVAC heating, ventilation and air-conditioning 
NTU number of transfer units 
OPI optimization potential index 
PLP physical lumped parameter 
RC refrigeration cycle 
RM subsystem refrigeration machine 
RMSE root-mean-squared error 
R2 coefficient of determination 
VDMA Verband Deutscher Maschinen und Anlagenbau 

Variables 
a fitted parameter 
A heat exchanger surface area [m2] 
B exergy [J] 
c specific heat capacity [J kg-1 K-1] 
h specific enthalpy [J kg-1] 
ṁ mass flow rate [kg s-1] 
n number of data points 
p pressure [Pa] 
Q thermal energy [J] 
Q̇ heat flow rate (thermal power) [W] 
s specific entropy [J kg-1 K-1] 

T temperature [K] 
ΔT temperature difference [K] 
U overall heat transfer coefficient [W m-2 K-1] 
W work [J] 
Ẇ power [W] 
y measured variable 
y averaged measured variable 
ŷ modeled / predicted variable 
ε heat exchanger effectiveness [–] 
η efficiency [–] 

Subscripts 
act actual 
amb ambient 
c condensation 
C condensator 
CPR compressor 
e evaporation 
el electrical 
E evaporator 
HE heat exchanger 
in input 
isen isentropic 
meas measured 
mech mechanical 
out output 
r refrigerant 
RM refrigeration machine 
sc subcooling 
sh superheating 

Superscripts 
acc acceptable 
adq adequate 
∗ reference  
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different modeling approaches are investigated and discussed: equation- 
fit, physical lumped parameter, refrigeration cycle and artificial neural 
network based models. The parameters of all four models are identified 
experimentally by using commonly measured quantities in field plants 
as input variables in order to ensure the practical application of the 
evaluation method. Their usage and performance is evaluated with 
measurements from a real field installation. The best suiting model is 
then applied to calculate the optimization potential index. As a case 
study, the application of the assessment method for the subsystem 
refrigeration machine is exemplified with the experimental data 
obtained. 

2. Assessment method 

2.1. Definition of the optimization potential index (OPI) 

The optimization potential index is given by Brenner et al. (2020b): 

OPI = 1 −

1
24 h

∫24 h

t=0 h

Ḃ∗

indt

1
24 h

∫24 h

t=0 h

Ḃindt

= 1 −

∑24 h

t=0 h
B∗

in

∑24 h

t=0 h
Bin

(1)  

with Bin and B∗
in the mean values of the actual and reference (baseline) 

exergy input. The optimization potential index compares the exergy 
input of the actual system with a baseline according to the state of the art 
in technology. These reference values are derived from technical stan
dards, as they are usually specified in tenders or contracts and should be 
fulfilled at the stage of commissioning. Also, these values represent an 
achievable technological baseline, which can depend on the re
quirements in different countries or regions. As the cooling load typi
cally follows a daily dominant oscillation (i.e. negligible variation of 
energy and exergy stored during a day), the key figure is evaluated on a 
daily basis, e.g. for a daily check. The OPI can be interpreted as an 
averaged key figure, where the integrals in Eq. 1 are approximated by 
the sum of the means of measured values over the sampling interval. In 
the present evaluation, the field plant data available was recorded by the 
plant operator at an interval of 5 minutes which results in 288 sum
mands for the daily assessment. 

The interpretation of the results is straight-forward also for non- 
specialists, which is important in practice: If the actual effort is larger 
than the reference, an optimization potential is present which is indi
cated with an OPI greater than zero. Conversely, an OPI lower than zero 
indicates an adequate operation of the system where the technical re
quirements are exceeded. However, it is unknown which values close to 
OPI = 0 (technical requirements fulfilled) still represent a permissible 
operation, since the boundary between the two operating states is sharp 
(see Fig. 1a). By introducing an additional acceptable limit, OPIacc, it can 
then be distinguished between adequate, acceptable and inadequate 
operation (see Fig. 1b), which yields a better interpretability of the re
sults. This advanced assessment is introduced in the present study for the 
subsystem refrigeration machine. 

2.2. Subsystem refrigeration machine 

The optimization potential index for refrigeration machines is 
Brenner et al. (2020b): 

OPIRM = 1 −

∑24 h

t=0 h
B∗

el,CPR

∑24 h

t=0 h
Bel,CPR

= 1 −

∑24 h

t=0 h
W∗

el,CPR

∑24 h

t=0 h
Wel,CPR

(2)  

where Bel,CPR and B∗
el,CPR are the actual and reference (adequate) elec

trical exergy input of the compressor, respectively. Since electrical en
ergy is by definition pure exergy, the key figure may be expressed in 
terms of the actual Wel,CPR and reference electrical energy consumption 
of the compressor W∗

el,CPR. For the evaluation with three levels (red, 
yellow and green, Fig. 1b), it is proposed to define an additional 
acceptable boundary given by: 

OPIacc
RM = 1 −

∑24 h

t=0 h
W∗

el,CPR

∑24 h

t=0 h
Wacc

el,CPR

(3)  

where Wacc
el,CPR is the acceptable electrical energy consumption of the 

compressor. As an approach, it is proposed to compute the reference 
(adequate) and acceptable compressor power consumption with a model 
of the refrigeration machine (see Section 4). The model should be as 
general as possible to assure a wide practical applicability of the pre
sented method, independently of the system structure and even if no 
technical information of the refrigeration machine is available. Since the 
OPI represents a daily averaged key figure and the time response of the 
system components is significantly lower than 24 hours, a steady-state 
model is considered acceptable. Also, the model should have few pa
rameters which can be experimentally identified with easily obtainable 
data with state-of-the-art measuring concepts in real field plants. 
Consequently, secondary side temperatures, the electrical power con
sumption of the compressor and the evaporator heat flow rate, which are 
commonly measured in field plants (see Section 3), are specified as input 
variables of the inverse model to identify the missing parameters (see 
Section 4). The reference electrical power consumption of the 
compressor Ẇ∗

el,CPR is then calculated by applying reference secondary 
side temperatures of the condenser (T∗

C,in and T∗
C,out) together with the 

evaporator heat flow rate Q̇E, the cold water temperatures (TE,in and 
TE,out) of the actual situation and the identified parameters as model 
inputs. In this paper it is proposed to define the reference secondary side 
inlet temperature of the condenser T∗

C,in according to: 

T∗
C,in = TC,in −

[

TC − T∗

C

]

(4)  

where TC represents the logarithmic mean temperature at which the 
heat transfer at the condenser takes place in the actual situation. It is 

Fig. 1. Optimization potential index scale to determine the operation condition 
and improvement possibilities with respect to the technical baseline with (a) a 
basic and (b) an advanced assessment. 
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defined as Brenner et al. (2020b): 

TC =
TC,out − TC,in

ln
(

TC,out
TC,in

) (5)  

with TC,in and TC,out the secondary side condenser inlet and outlet tem
perature, respectively. T∗

C in Eq. 4 represents the reference mean tem
perature (Brenner et al., 2020b): 

T∗

C = Tamb + ΔTHE +
TC,out − TC,in

2
(6)  

at which the heat transfer at the condenser takes place, if the hot side 
hydraulic circuit including the cooler is correctly operated and main
tained according to the technical requirements. Tamb denotes the 
ambient air temperature and ΔTHE the temperature difference in the 
cooler heat exchanger, i.e. cooling water outlet to ambient air inlet, 
according to technical standards. For the latter, a stricter value of 6 K is 
applied as reported in the technical standard VDMA 24247-8 (Me
chanical Engineering Industry Association (VDMA), 2011) (see Table 1). 
Similarly, the reference secondary side outlet temperature of the 
condenser may be defined as: 

T∗
C,out = TC,out −

⎡

⎢
⎢
⎣

TC,out − TC,in

ln
(

TC,out
TC,in

) −

(

Tamb + ΔTHE +
TC,out − TC,in

2

)

⎤

⎥
⎥
⎦ (7)  

Therefore, these reference temperatures represent adequate values 
which should be achieved if the hot side hydraulic circuit, including the 
cooler, is correctly operated and maintained according to the technical 
standards. The reference condenser secondary side in- and outlet tem
perature is lower or higher than the measured temperature if the heat 
transfer takes place at a higher or lower temperature compared to the 
technical requirements, respectively. A lower cooling water temperature 
is favorable for the refrigeration machine operation. 

The acceptable electrical power consumption of the compressor 
Ẇacc

el,CPR is determined analogously with the refrigeration machine model 
by applying acceptable secondary side temperatures of the condenser 
(Tacc

C,in and Tacc
C,out). These temperatures are calculated similarly to Eq. 4 

and 7 by applying the less stricter value for ΔTHE according to Table 1. 

3. Refrigeration plant structure 

Fig. 2 shows schematically the typical refrigeration plant structure 
with cold water distribution and free cooling. Variables in italic repre
sent commonly measured and monitored thermodynamic quantities of 
refrigeration machines in field plants and their corresponding measuring 
location. As a case study, an existing refrigeration plant installed in the 
city of Winterthur, Switzerland, is investigated in the present work. The 
field plant includes five refrigeration machines (see Fig. 2, subsystem 
RM) with 950 kW cooling power each and ammonia (R717) as refrig
erant. Additionally, one free cooling heat exchanger (see Fig. 2, sub
system FC) is integrated to the system and the refrigeration machines as 
well as the distribution networks (see Fig. 2, subsystem CST) are located 
underground. The hydraulic circuit supplies seven different buildings 
with cold water, where the cooling locations (see Fig. 2, subsystem CL) 
represent air-handling units of ventilation systems in the different 
buildings with office space cooling as main application. Additionally, 

three rooftop coolers (see Fig. 2, subsystem DC), 12 circulating pumps 
and two cold water storage tanks are present in the system. The present 
work focuses on the subsystem refrigeration machine. 

4. Investigated modeling approaches 

Four models are investigated: two black-box models (equation-fit 
and artificial neural network based) and two gray-box models (physical 
lumped parameter and refrigeration cycle based). All models use 
measured secondary side quantities as inputs (TE,in, TE,out , TC,in, TC,out, 
Q̇E) and a procedure for finding the values of the parameters which 
minimizes the difference between the measured output (Ẇel,CPR) and the 
output of the model. 

4.1. Equation-fit based model 

Equation-fit based (EF) models are purely empirical and do not aim 
to fully characterize each component in the refrigeration machine, but to 
predict certain key performance parameters such as the coefficient of 
performance (COP), the cooling load or the compressor power 
consumption. 

The Comstock model has been chosen as equation-fit based model, as 
it uses commonly measured quantities in field plants as input variables 
to determine the compressor electrical power consumption. It is a 
second-order polynomial fitting model with 7 fitting parameters ai to 
determine the compressor electrical power consumption (Wang, 2017): 

Ẇel,CPR = a1 + a2TE,in + a3TC,in + a4Q̇E + a5TE,inQ̇E + a6TC,inQ̇E + a7Q̇2
E

(8)  

with TE,in the evaporator secondary side inlet temperature, TC,in the 
condenser secondary side inlet temperature and Q̇E the evaporator heat 
flow rate as input parameters. The coefficients ai reveal no physical 
characteristic and are determined from measurement data with the 
lsqcurvefit curve-fitting algorithm pre-implemented in MATLAB (MAT, 
2018). 

4.2. Physical lumped parameter model 

Physical lumped parameter (PLP) models are grey-box models and 
make use of thermodynamic or heat transfer relations to build the model 
structure based on semi-empirical equations and require experimental 
data to obtain missing parameters. They generally have a similar form as 
the equation-fit based models. 

In the present work, the Folicao model is applied as physical lumped 
parameter model. It uses commonly measured quantities in field plants 
as input variables like the Comstock model. It is a three-parameter 
model which has the following form Foliaco et al. (2020): 

Ẇel,CPR −

(
TC,in − TE,out

TE,out

)

Q̇E = a1TC,in + a2

(
TC,in − TE,out

TE,out

)

+ a3

⎛

⎜
⎝

Q̇2
E + Q̇EẆel,CPR

TE,out

⎞

⎟
⎠ (9)  

with TE,out the evaporator secondary side outlet temperature, TC,in the 
condenser secondary side inlet temperature and Q̇E the evaporator heat 
flow rate as inputs parameters. The fitting parameters are determined 
with the regression routine regress pre-implemented in MATLAB (MAT, 
2018), where a1 denotes the entropy generation in the refrigeration 
cycle, a2 the heat losses or gains from the refrigeration machine and a3 
the total heat exchanger thermal resistance. 

Table 1 
Temperature differences in dry cooler heat exchangers according to VDMA 
24247-8 (Mechanical Engineering Industry Association (VDMA) (2011)).   

Adequate Acceptable 

ΔTHE  ≤ 6 K  ≤ 8 K   
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4.3. Refrigeration cycle based model 

Refrigeration cycle based (RC) models, also denoted physical 
component based models, aim to evaluate and predict the evolution of 
the refrigerant and its thermodynamic states during the passage through 
each refrigeration machine component, where it is exposed to 
compression, expansion as well as heat gains and losses. Usually, the 
nodal approach is applied, where the main components (compressor, 
evaporator, condenser and expansion valve) are modeled separately and 
then connected to each other in order to simulate the whole refrigeration 
cycle. 

A simplified refrigeration cycle based model is applied in the present 
work which represents a gray-box fitting model. It considers the four 
main refrigeration machine components (evaporator, compressor, 
condenser and expansion valve) in terms of thermodynamic and heat 
transfer relations. Fig. 3 shows a schematic of the considered refriger
ation cycle as well as the corresponding log(p)-h-diagram with the 
different refrigerant states. The thermo-physical properties of the 
refrigerant are computed with the tool REFPROP (Reference Fluid 
Thermodynamic and Transport Properties Database) (Bell et al., 2013). 
The model uses secondary side temperatures as well as the evaporator 
heat flow rate as input variables and incorporates 6 physical parameters 
(see Table 2 for details), which are identified from measurement data. 
To reduce the number of unknown parameters, the following assump
tions apply to the model:  

• steady-state operation,  
• negligible heat exchange with the environment,  
• negligible pressure losses,  
• isenthalpic expansion. 

With the given simplifications, the chosen refrigeration cycle may 
differ from the real system structure and, consequently, the identified 
parameters may not represent the actual physical conditions. However, 
the model is still able to predict the compressor electrical power with a 
reduced amount of required data. Therefore, to the best of the authors 
knowledge, these simplifications are reasonable and ensure a broad 
applicability of the presented method. 

The evaporator and condenser are modeled with the NTU-ε effec
tiveness method and are considered as heat exchangers with phase 
change on the primary side. This represents a special case, where the 
heat capacity rates of the condensing vapor or evaporating liquid tends 

towards infinity (nearly isothermal processes). The evaporator effec
tiveness εE is then given by Incropera et al. (2014); Jin and Spitler 
(2002): 

Fig. 2. Simplified piping & instrumentation diagram of a typical refrigeration plant with cold water distribution and a free cooling module, i.e. heat exchanger. 
Commonly measured and monitored variables of refrigeration machines in field plants are shown in italic. 

Fig. 3. Simplified schematic of (a) the considered refrigeration cycle and (b) 
the corresponding log(p)-h-diagram with the different refrigerant states 1 to 4 
and 2s. 
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εE = 1 − e−NTUE (10)  

where NTUE denotes the dimensionless parameter number of transfer 
units of the evaporator, which is defined as Incropera et al. (2014): 

NTUE =
(UA)E

cp,EṁE
(11)  

with (UA)E the overall heat transfer coefficient times the heat transfer 
area of the evaporator as well as cp,E and ṁE the specific heat capacity 
and the mass flow rate of the secondary side chilled water, respectively. 
As the heat capacity and mass flow rate of the secondary side are un
known, their product can be determined with an energy balance over the 
evaporator. The evaporation temperature of the refrigerant is then given 
by Incropera et al. (2014); Jin and Spitler (2002): 

Te = TE,in −
ΔTE

εE
(12)  

where TE,in denotes the evaporator secondary side inlet temperature and 
ΔTE the secondary side inlet to outlet temperature difference. Analo
gously, Eq. 10 to 12 apply also for the condenser by utilizing the cor
responding quantities. With the chosen NTU-ε effectiveness approach, 
the superheating and subcooling effects in the heat exchangers are not 
explicitely treated. However, the error is assumed negligible, as it is 
presumably compensated with the UA parameter when calibrating the 
model. With the evaporation and condensation temperature, the low 
and high pressure level, pe and pc (see Fig. 3b), can be determined. The 
refrigerant temperature T1 at state 1 after the evaporator (see Fig. 3) is: 

T1 = Te + ΔTsh (13)  

where ΔTsh represents the superheating temperature difference. Simi
larly, the refrigerant temperature T3 at state 3 after the condenser (see 
Fig. 3) is: 

T3 = Tc − ΔTsc (14)  

where ΔTsc is the subcooling temperature difference. Together with the 
found pressures, the specific enthalpies and entropies (h1, h3, s1, s3) of 
the refrigerant can be identified at state 1 and 3. By assuming an isen
thalpic expansion process, the specific enthalpy h4 at state 4 after the 
expansion valve (see Fig. 3) is equivalent to the specific enthalpy h3 at 
state 3. With an energy balance, the evaporator heat flow rate Q̇E is given 
by Dinçer and Kanoǧlu (2010); Moran et al. (2010): 

Q̇E = ṁr(h1 − h4) (15)  

from which the refrigerant mass flow rate ṁr can be determined. The 
actual compressor input ẆCPR,act is Dinçer and Kanoǧlu (2010); Moran 

et al. (2010): 

ẆCPR,act = ṁr(h2 − h1) (16)  

where the enthalpy h2 at state 2 after the compressor must be known 
(see Fig. 3). The compressor isentropic efficiency ηisen is given by Dinçer 
and Kanoǧlu (2010); Moran et al. (2010): 

ηisen =
ẆCPR,isen

ẆCPR,act
=

ṁr(h2s − h1)

ṁr(h2 − h1)
=

h2s − h1

h2 − h1
(17)  

which relates the isentropic compressor input ẆCPR,isen with the actual 
compressor power ẆCPR,act , where h2s represents the specific enthalpy 
resulting from an isentropic (i.e. reversible) compression (see Fig. 3). By 
rearranging Eq. 17, h2 can be identified, and finally, the compressor 
electrical power determined: (Ozgur et al., 2014): 

Ẇel,CPR =
ẆCPR,act

ηel,mech
(18)  

where ηel,mech represents the compressor electro-mechanical efficiency to 
account for mechanical as well as electrical losses. The condenser heat 
flow rate Q̇C is given with an overall energy balance over the refriger
ation cycle (Dinçer and Kanoǧlu, 2010): 

Q̇C = Q̇E + ẆCPR,act (19) 

The condenser heat flow rate is unknown in the beginning, guessed 
for the initial iteration and then iteratively computed with the described 
procedure, until the relative error is lower than 0.1%. A cost function, 
chosen to be the root-mean-squared error (RMSE, see subsection 4.5) 
between the modeled and measured compressor electrical power, is 
minimized to identify the models parameters (see Table 2). These are 
initially determined with a batch gradient-descent routine (Ruder, 
2017) and then iteratively optimized with the pre-implemented mini
mization algorithm fmincon in MATLAB (MAT, 2018). All parameters 
reveal a physical characteristic and defining them as constants is phys
ically not correct (except in steady-state). However, to the best of the 
authors knowledge, this simplification is reasonable with the goal of 
having a widely applicable model which can be employed indepen
dently of the compressor and heat exchanger design, even if no technical 
details of the refrigeration machine are available. 

4.4. Artifical neural network model 

Artificial neural networks (ANN) are data-driven black-box models 
with no physical meaning which are inspired by the biological nervous 
system. The ANNs comprise a set of simple elements in parallel, the so 
called neurons, which have a weighted connection between each other 
in different layers. This results in a construct of multiple mathematical 
functions, which relates a set of inputs to certain outputs (Kalogirou, 
2000). Depending on the application, ANNs can be composed of any 
number of neurons and arranged in different structures. 

In the present work, a feed-forward ANN model is applied with one 
input layer, one ouput layer and one hidden layer (see Fig. 4), which has 
been determined by trial and error. Like the refrigeration cycle based 
model, the ANN has 5 input parameters (secondary side temperatures as 
well as evaporator heat flow rate) and one output parameter, the 
compressor electrical power Ẇel,CPR. A tan-sigmoid and a linear activa
tion function is used for the hidden and output layer, respectively. The 
hidden layer consists of 25 neurons (with bias). The amount of neurons 
was identified by iteratively increasing the number until the perfor
mance function, chosen to be the mean-squared error (MSE), was 
minimized. The latter is defined as Datta et al. (2019): 

MSE =
1
n

∑n

i=1

(

ŷi − yi

)2

(20) 

Table 2 
Inputs, outputs and parameters of the RC based model.  

Type Variables 

input TE,in  evaporator secondary side inlet temperature  
TE,out  evaporator secondary side outlet temperature  
TC,in  condenser secondary side inlet temperature  
TC,out  condenser secondary side outlet temperature  

Q̇E  evaporator heat flow rate 

output Ẇel,CPR  compressor electrical power 

parameter ηisen  compressor isentropic efficiency  
ηel,mech  compressor electro-mechanical efficiency  
ΔTsh  superheating temperature difference  
ΔTsc  subcooling temperature difference  
(UA)E  evaporator surface dependent overall heat transfer 

coefficient  
(UA)C  condenser surface dependent overall heat transfer 

coefficient  
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where yi represents the measured value, ŷi the predicted value and n the 
number of data points. The number of neurons is substantially lower 
than the number of training data points, which reduces the risk of 
overfitting. The ANN is designed, set-up and trained with the Deep 
Learning Toolbox (functions feedforwardnet and train) pre-implemented 
in MATLAB (MAT, 2018). One of the most popular learning method is 
the back-propagation, which is a gradient-descent based procedure 
(Kalogirou, 2000). In the present work, the Levenberg-Marquardt 
back-propagation algorithm is applied for training (Hagan and Men
haj, 1994), which is particularly useful for moderate-sized ANNs with 
the MSE as performance function (Hagan et al., 2014). 

4.5. Model performance metrics 

Many different performance indicators exist, which can be applied to 
evaluate the model accuracy. In the present work, the following in
dicators are applied, where yi represents the measured value, ŷi the 
predicted value and n the number of data points. One of the most applied 
index is the root-mean-squared error (RMSE) (Şahin, 2011): 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1

(

ŷi − yi

)2
√

(21)  

The second index is the mean-absolute error (MAE) which has an 
increased interpretability compared to the RMSE, which is Wang (2017): 

MAE =
1
n

∑n

i=1

⃒
⃒
⃒
⃒ŷi − yi

⃒
⃒
⃒
⃒ (22)  

The coefficient of variation of the root-mean-squared error (CV or CV- 
RMSE), also denoted relative root-mean-squared error (R-RMSE), in
dicates if the model has a satisfactory prediction ability, where a small 
value indicates a high predictive accuracy. The indicator is defined with 
Wang (2017): 

CV =
RMSE

yi
⋅100% (23)  

where yi is the average of the measured values. Additionally, the coef
ficient of determination (R2) is applied, which is given by Şahin (2011): 

R2 = 1 −

∑n

i=1

(

yi − ŷi

)2

∑n

i=1

(

yi − yi

)2 (24)  

This indicator relates the sum of the squared residuals (deviation from 
the predicted and measured value) with the total sum of squares. The 
closer the value of R2 is to 1, the more accurate are the modeled values. 

5. Results and discussion 

5.1. Refrigeration machine model comparison 

Fig. 5 depicts the modeled compressor electrical power consumption 
of each modeling approach (y-axis) in function of the measured 
compressor electrical power consumption (x-axis) with a ±10% error 
band. Table 3 lists the values of the different performance indicators for 
each model with respect to the training / validation and testing data. For 
the former, measurement data of refrigeration machine 1 (RM1, 12,430 
data points) installed in the investigated field plant (see Fig. 2) are 
applied, where a share of 60 and 40% is used for training and validation, 
respectively. Measurement data of refrigeration machine 2 (RM2, 
12,250 data points) is applied as testing data set. The number of data 
points represents all the measuring points in the investigated time 
period (sampling time from April to December) according to the 
received data of the plant operator, where the corresponding refriger
ation machine was running, i.e. electrical power consumption of the 
compressor was larger zero. The measured compressor electrical power 
ranges from 1 to 195 kW and from 1 to 184 kW in the training / vali
dation and testing data set, respectively, where a large range of different 
operating conditions are present (part load as well as full load). 

To start with, the equation-fit based (EF) model reveals with the 
training / validation data a root-mean-squared (RMSE) and mean- 
absolute error (MAE) value of 3.23 and 2.36 kW (see Table 3), respec
tively, where the values are reasonable with the given range of the 
compressor electrical power. Similar values are achieved with the 
testing data set, which has not been used for training. The physical 
lumped parameter (PLP) model reveals a similar performance as the 
equation-fit based model, where the RMSE and MAE values range 
depending on the data set from 3.15 to 3.2 kW and 2.44 to 2.55 kW, 
respectively (see Table 3). Furthermore, the refrigeration cycle (RC) 
based model performs worst among the investigated modeling ap
proaches. This outcome is most likely due to the constant model pa
rameters, which would vary in reality. A large range of different 
operating states is present in the experimental data of the field plant, 
which complicates the identification of valid parameters for all load 
conditions. The predicted power consumption by the artificial neural 
network (ANN) model shows qualitatively a good agreement with 
measurements when using both data sets (see Fig. 5d). Since ANN 
models interpolate well, this outcome is most likely due the large 
training domain, where all kind of part and full load conditions are 
covered. Also, all refrigeration machines in the field plant are of the 
same type and size, whereby most likely all of them reveal a similar 
operating behavior. The adequate performance is also demonstrated 
with R2 values close to 1 and CV values below 3%, where only 
approximately 10% of the simulated values are outside of the ±10% 
error band. 

When comparing the different models, all approaches perform only 
slightly worse with the testing data set, where the equation-fit based and 
physical lumped parameter model reveal a similar performance. The 
reason is probably the large training domain, where all kind of operation 
conditions are covered and that the refrigeration machines are identical. 
The refrigeration cycle based model underpredicts the compressor 
power significantly in part load conditions (see Fig. 5c), which con
tributes to the highest key figure values compared to the other 

Fig. 4. Topology of the applied feed-forward neural network with the corre
sponding input and output variables. 
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investigated models. All performance indicators reveal acceptable 
values except the coefficient of variation, where only the ANN model 
reaches values lower than 5%, which is adequate for a practical appli
cation of the model (Hydeman et al., 2002; Wang, 2017). Consequently, 
the ANN model is applied for the optimization potential index. By using 

reference and acceptable temperatures on the condenser secondary side 
according to technical standards, the reference and acceptable 
compressor power consumption can be simulated (see subsection 2.2). 

5.2. Refrigeration machine performance analysis 

By applying the method described in subsection 2.2, together with 
the acquired measurement data from the field plant and the ANN model, 
the corresponding OPI of each refrigeration machine is determined. The 
analysis should further demonstrate the usage of the evaluation 
approach and reveal the performance as well as eventual optimization 
potentials of the refrigeration machines. According to the available 
experimental data, refrigeration machine operation occurred mainly 
from begin of April to end of October. Fig. 6 shows the daily optimiza
tion potential index (OPI, y-axis) of the subsystem RM (see Fig. 2) in the 
field plant under investigation in function of the date (x-axis). 

The daily OPI is indicated with data points, where the 14-days 
moving average is represented by a solid line to evaluate the tendency 
over time. The green, yellow and red zone depicts the adequate, 
acceptable and inadequate operation condition, respectively. The 
adequate boundary is always at OPI = 0 according to the key figure 
definition (comparison of the reference with the actual effort), while the 
acceptable limit may fluctuate due to dependencies of various parame
ters at the different operating points (comparison of the reference with 

Fig. 5. Comparison of the measured and modeled compressor electrical power consumption of the refrigeration machines in the field plant: (a) equation-fit based 
model, (b) physical lumped parameter model, (c) refrigeration cycle based model and (d) artifical neural network model. 

Table 3 
List of the RMSE, MAE, R2 and CV values for each modeling approach with 
respect to the training / validation (RM1) and testing (RM2) data of the 
refrigeration machines in the field plant.  

Performance indicator Equation-fit based 
model 

Phyiscal lumped 
parameter model  

RM1 RM2 RM1 RM2 
root-mean-squared error (RMSE) [kW] 3.23 3.26 3.15 3.20 
mean-absolute error (MAE) [kW] 2.36 2.34 2.44 2.55 
coefficient of determination (R2) [–] 0.995 0.994 0.995 0.995 
coefficient of variation (CV) [%] 6.36 6.34 6.20 6.22  

Refrigeration cycle 
based model 

Artificial neural 
network model  

RM1 RM2 RM1 RM2 
root-mean-squared error (RMSE) [kW] 4.02 4.24 1.12 1.45 
mean-absolute error (MAE) [kW] 3.16 3.40 0.80 1.07 
coefficient of determination (R2) [–] 0.992 0.991 0.999 0.999 
coefficient of variation (CV) [%] 7.91 8.25 2.21 2.82  
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the acceptable effort). Additionally, missing data points for the accept
able limit were determined by interpolation, since not all refrigeration 
machines were running every day. 

The optimization potential index of the five different refrigeration 
machines lies in the range from –0.47 to 0.44 (see Fig. 6a to 6e), whereas 
the maximum difference in OPI of 0.43 between two chillers (RM4 and 
RM5) is reached on June 15th. Refrigeration machine 2 yields the lowest 

average optimization potential index OPIRM2 of –0.03 (see Fig. 6b), 
while the key figure scatters the least among all refrigeration machines. 
The system operates approximately 80% of the time below the accept
able boundary OPIacc

RM2, where 60% and 20% of the time an adequate and 
acceptable operation of the subsystem is achieved, respectively. 
Conversely, refrigeration machine 5 yields the highest average key 
figure among all refrigeration machines of 0.02 (see Fig. 6e). In 44% and 

Fig. 6. Optimization potential index OPIRM of (a) refrigeration machine 1 to (e) refrigeration machine 5 with adequate (green), acceptable (yellow) and inadequate 
(red) operation range. The data points (black crosses) represent the daily OPI values and the black solid line indicates the 14-days moving average of the OPI. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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29% of the time in the investigated period the technical requirements 
are exceeded and fulfilled, respectively. The refrigeration machine was 
commissioned on April 13th, and therefore, no key figures are present 
before that day. The late commissioning of the machine may also be the 
reason for the differentiated behavior compared to the other devices. 
Overall, OPIRM1 to OPIRM5 are at least 73% of the time in adequate and 
acceptable operation range. This indicates a reasonable performance of 
all refrigeration machines and their hydraulic integration, where mostly 
little to no optimization potential compared to the state of the art in 
technology is present. 

Interestingly, by examining the moving average OPIavg
RM of all refrig

eration machines, they reveal a similar operation. Analogue tendencies 
of an increasing and decreasing OPI are observed. Presumably, this is 
due to the same type and size of all installed refrigeration machines, e.g. 
redundancy purposes, where each of them are operated comparably. 
Moreover, it is revealed that during the warmer months over the year, i. 
e. June to end of August, all refrigeration machines exceed and fulfill the 
technical requirements. This leads to the assumption that the chillers are 
working near to or at the design point and that the hot side hydraulic 
circuit is properly operating. The refrigeration machines reveal an in
crease of the OPI in the transition period, i.e. April, May and September, 
where mostly an acceptable operation is present. A further noticeable 
increase in OPI is observed in the colder months October to December, 
where generally an inadequate operation is present. However, the sys
tems are operating infrequent in this time period, since there is a sig
nificant lower need for cooling, and single outliers should not be overly 
considered. Most likely, the refrigeration machines are not operating at 
the design point in the mentioned time period or the temperature level 
on the hot side hydraulic circuit is not ideal, where the latter can result 
in an increased electrical power consumption of the compressors. Ac
cording to literature, lowering the condensing temperature (which is 
highly influenced by the hot side hydraulic circuit) by 1 K, can reduce 
the energy consumption of the refrigeration plant by up to 2.5% as a rule 
of thumb (Brunner et al., 2019). The increased OPI values in the colder 
months can also be an indicator to make use of free cooling, which is 
typically active in this period. Furthermore, errors resulting from the 
ANN model are possible, since errors in part load conditions may have 
an increased effect. However, to the best of the authors knowledge, these 
errors are assumed negligible according to the model performance (see 
subsection 5.1). To finally determine the issues in the subsystem RM in 
the mentioned time period a detailed analysis would be necessary, 
assuming the needed experimental data is available. 

6. Conclusions and outlook 

The present work demonstrates successfully the use of refrigeration 
machine models for the integration in the optimization potential index. 
The practical application is shown by applying the method to a real field 
installation as a case study. With the introduced additional limits, a 
more detailed assessment with the evaluation method is achieved and 
the interpretability of the results is increased. The distinction between 
adequate (technical requirements exceeded), acceptable (technical re
quirements fulfilled) and inadequate (potential for improvement) 
operation according to the state of the art in technology is straightfor
ward and the results are simple to interpret, which is important in 
practice. In that way, refrigeration plant operators can track the 
refrigeration machine performance on a daily basis and a simple colored 
indicator could be realized for the implementation in monitoring sys
tems. To the best of the authors knowledge, an analysis with the 
described method (revealing possible optimization potentials in a first 
step), together with a detailed analysis (identify the malfunction in 
detail in a second step and evaluate if adjustments are worthwhile also 
from an economic point of view), delivers a target-oriented procedure to 
analyze the refrigeration plant behavior and to optimize the system 
efficiency. 

Moreover, all examined models reveal an acceptable performance, 
where the mean-absolute error ranges from 0.8 to 3.4 kW. This values 
are considered reasonable, with the given range of the measured 
compressor electrical power consumption. However, only the ANN 
model reaches coefficient of variation values lower than 5%, which 
represents an adequate value for a practical application. Consequently, 
this modeling approach is applied for the determination of the optimi
zation potential index. The investigated refrigeration machines of the 
field plant generally fulfill or exceed the technical requirements. 
Refrigeration machine 2 performs best with an average optimization 
potential index of –0.03. Refrigeration machine 5 performs worst, while 
being 73% of the time in adequate or acceptable operation. Moreover, 
all refrigeration machines show potential for improvement in the colder 
months. This can be an indicator to make use of free cooling, which is 
typically active in this time period. 

Future work could cover the investigation of additional machine 
learning algorithms or models for the other subsystems in the refriger
ation plant. This can increase the level of detail of the analysis and may 
help to assess refrigeration plants with a reduced amount of installed 
measuring equipment. In this context, further measurement data should 
be collected from other real refrigeration plants, preferably with 
different cooling capacities and sizes. The practical application of the 
evaluation method could then be elaborated in detail and interrelations 
between various field plants might be identified. 
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